EME Measurements and EMECalc

Peter Blair G3LTF

Contents

- Introduction
- Calculation of the received signal
- System Temperature, Spillover, Mesh Feed-through Where do they come from?
- Y factor measurements of.... Ground, Sun, Moon, Radio Stars
- Derivation of solar flux data
- Concluding comment

The purpose of EMECalc

- Estimate SNR of own echoes and signals from other stations by entering system parameters; Antenna size and feed type, Noise figure, cable losses, Tx power
- Enables exploration of the sensitivity of an EME system to parameter changes
- Allows checking of some of the parameters by using measurements of noise power from known sources (sun, moon, radio stars, ground)

A few key points

- I will only be discussing applications at 1296MHz and above
- I will not cover yagis
- Remember that EMECalc is not a complete, comprehensive, system analysis and it contains some simplifying assumptions
- There is a wealth of detail in the Help section

Recent History

- EMECalc was in near continuous evolution until Feb 2016 when VK3UM became SK
- Major changes to parabola performance following W1GHZ paper at EME2014
- Changes to Solar flux acquisition
- Changes to Ground/ Cold Sky prediction
- Moon temperature and Radio star flux updated

The full EMECalc screen is tightly packed because its displaying a lot of data and variables. But don't be put off. You can start by altering the default screen to your own station.

The full EMECalc screen is tightly packed but we don't need all of it for now. We can take out the Dx Station and Yagi sections. This is showing my 5.7GHz system.

EMECalc Key equation (1)

The radar equation for echos

 $Pr/Pt = G^2 * \lambda^2 * \rho / R^4 * (4*\pi)^3$

G is the Antenna gain

- Pt Transmitter power at the feed terminal
- Pr Received power at the feed terminal

R moon distance

ρ Moon radar cross section

If we set G=1 (isotropic) Then Pr/Pt is called the "path loss" or the "moon return loss"

EMECalc uses Equation 1 to give the received echo SNR

Two Station EME Rx Performance Source Pos. Planets Sky Map Home Data	x 10-multiplier Note Pad Hint - Res Ver. History VK3UM.com /Help About (Exit
Tx A (Home Station) G3LTF_5780_3 PX BW Diam Mach Spacing H-V Seachibitity Echo S/N 5760 MHz 283.87 dB 6.0 K 145 Hz 1.00 mm 6.00 mm -156.8 dBm 15.31 dB Frequency Path Loss T Stay Circ 6.412 6.00 mm -156.8 dBm 15.31 dB IPS Learmonth Western Au 2019 Apr 15 1216z Loss 0.288 dB Mach Gad to Cold Stay> 4.89 dB 10.7m 15.81 K 46.82 K	Yagi Array 5760 MHz E 18.54* Array Type and Gain Single Yagi Gain in dBd Number of Yagic G/T E 18.54* Array Type and Gain → 16.80 dBd ↓ 1 ↓ 0.00 H 18.54* 16.80 dBd 18.95 dBi User Defined Yagi ↓ 1 ↓ 0.00 H 18.54* 16.80 dBd 18.95 dBi User Defined Yagi ↓ ↓ 0.00 H 18.54* 16.80 dBd 18.95 dBi Diameter Size 1/10 Freed Type Scent SM6FHZ Septum 0.745L Linear PoL ✓ Circolar PoL Diameter Size 1/10 Efficiency Beam Vidth Gain Diak Gain 15.3 Landeda ↓ 73.2% ↓ 0.607* 89817 47.38 dBd 49.53 dBi
Image: State of the state I	Home Station Y Factor Calc Notesplot Plat Quest (public Sky) System TK Noise Source (Hot) C Sagittarius A C Taurus A 304 Jy 6 K 105.62 K C Cassiopeia A C Virgo A Outre Source Y Factor 0.09 dB C Centaurus A C Termination YU1AW Aperture Source calculations. These are only valid for 144 and 432 MHz.
Dx Station as received at Home Station 5.88 dB Moon noise included Home Station as received at Dx Station 11.09 dB Moon noise included Tx B (Dx Station) Default Default Specific RFV Specific RFV Specific RFV	C Aquarius or Leo T Sky (variable) T on to Source 3 should be used for 12.50 km/s2 Noise Source Positions. Y Figure Information Yagi Array 5760 MHz Single Yagi Gain in dBd Number of Yagis
5760 MHz 283.87 dB 6.0 K 120 Hz 2.92 mm 10.00 mm -158.8 dBm 1.66 dB Frequency Path Loss T Sky Circ 5.76 % 10.00 mm -158.8 dBm 1.66 dB IPS Learmonth Western Au 2019 Apr 15 1216z Loss 0.257 dB 0.30 Effective ground 223 K - 10.00 mm 7.32 K 24.34 K Circ 0.257 dB Mach Gind to Cold Sky > 5.25 dB	→ 18.00 dBd ↓ 1 ↓ 0.00 H 16.15 * 18.00 dBd 20.15 dBi User Defined Yagi Parabolic Reflector Focal tagkt 107 m Feed Type VEMMA (Super) Linear Pol. ✓ Circelar Pol. Dich Gain Dich Gain
74 0.10 dB 0.35 dB 33.0 dB 2.0 dB 1.0 dB 34.10 K 8.35 K 12.91 dB Get sfue LNA Loss LNA Gain Coxcloss Pr. Nr Spillover F-odbrough Sun Y 4 + + + + + 0.81 dB	2.49 m Metric 0.43 67.2% 1.46* 14297 39.40 dBd 41.55 dBi Effective Agenture Executive Agenture Executive Agenture Executive Agenture TxA 19.36 M ² 0.87 S/F Undrate Moon Phase 0.08 Eth Save Data
Tx B Output Power Transmission Loss Power at Feed Moon Y 30 Watts 14.77 dBW 0.3 dB 28 Watts 14.47 dBW 400,293 W EIRP Grower Tenperature RxTK 31.81 K = 0.45 dB Receive Transmission Loss B 28 Watts 14.47 dBW 400,293 W EIRP Grower Tenperature TSys 80.25 K = 1.06 dB System Noise Temperature	TxB 3.08 M² 0.36 Orr Opdate Moon Illum 6.5 % Moon beam Fill Fador San Beam Fill Fador Grit Ratio Illum 6.5 % Image: San Beam Fill Fador Image: S
Operating Frequency Click to enter a User Frequency 50 MHz 432 MHz 2304 MHz 10.368 GHz 70 MHz 144 MHz 900 MHz 3456 MHz 24.048 GHz 406 MHz 222 MHz 1296 MHz 5760 MHz 47.088 GHz 2295 MHz	52.78 dB 378,293 kms 0.526° 31'35.3" 229 K Moon return Loss Moon Flux 10°-22 Moon Declination Frequency adjusted stu 283.87 dB Sv = 1.55 Dec. 20.56 ° 140 Engineering Fanel S700 Mirz VK3UM Ver 11.10

Echo SNR = Pt – Return loss +2*Antenna Gain Noise Power =10*log (k*Tsys*B)

wo Station EME	Performance Sou	ce Pos. Planets	Sky Map Home Dat	a)	x 10 Multiplier Note Pad Hint - Res	Ver. History VK3	BUM.com /Help Abou	t (Exit)
Tx A (Home Statio	n) G3LTF_S7	60_ Rx BW	Diam Mesh	Specing H-V : Sensitivity	Echo S/N					- <u>}_</u> ,
5760 MHz 28	3.87 dB 6.0 K	145 Hz	🗧 1.00 mm	6.00 mm 📫 -156.8 dBn	n 15.31 dB		SINK		```	
Frequency Path	oss T	Sky	Circ 6.41%	6.00 mm	ground 242 K					
IPS Learmonth W 10.7cm 15.87	/estern Au 2019 (46.82 K	Apr 15 1216z	Loss 0.288 dB 11 39 K>	Mesh Gnd to Cold Sky>	4.89 dF		Parabolic Reflector Focal length 2.25 m	6cm SM6FHZ Septum 0.749L	Linear Pol.	Circular Pol.
74 0.20 0	IB 0.65 dB	11.0 dB	0.3 dB 1.5 dB	15.24K 9.30 K	18.61 dB	->	Diameter Size I/D Efficiency 6.00 m Metric 0.38 73.2	Beam Width	Goin Dist 89817 47.38 dE	3d 49.53 dBi
Get sfu		LNA Gain Cot	ax Loss Rx Nf	Spillover Feedthrough derived from Mesh size	Sun Y		115.3 Lambda			
Tx A Output Pov	rer	Transmission Loss	Power at Feed		Moon Y		Home Station Y Factor Calc Noise Source (Hot) O Servitterius A O Teurus A	304 Jy	Guilet [cold] sky	syatem тк 105.62 К
■ 40 Watts	16.02 dBW	0.1 dB	39 Watts	15.92 dBW 3,510,886	WEIRP	Date	C Cassiopeia A C Virgo A	Point Source	e Y Factor	0.09 dB
RxTK 75.08 K = 1.0 Receiver Noise Tempera	10 dB ture	T	230 K 17 C	T Sys 105.62 K = 1.35 dB System Noise Temperature			C Centaurus A			
				Change Moon Di	stance uded		C Aquarius or Leo TSky (variable)			
				Perigee	Apogee		Noise Source Positions.	Y Figure Information		
				378,293 kn	ns		Vani Arrav 5760 MHz		ArravTu	ipe and Gain

k is Boltzmanns constant 1.38*10^-23 joules/ kelvin

Where does EMECalc get Tsys and Antenna gain from? And what is Tsys?

System Noise Temperature, Tsys, definition

Tsys = Trx + Tsky + Tspill +Tft

- **Trx** Receiver noise temperature contribution from line losses, LNA and following stages
- Tsky Sky temperature
- **Tspill** noise temperature contribution from spillover and sidelobes
- **Tft** noise temperature contribution from any mesh transparency

Spillover

• Solid dish + perfect receiver means....

Tsys = 🙀 + Tsky + Tspill + 🎀

- In the limit the Antenna determines the system performance.
- Putting an excellent VLNA on a poor antenna is a waste of time.
- Calling this quantity in EMECalc "Spillover" is not strictly correct but it's historical and cant be changed now!

Dish pointing to Zenith (almost)

Dish pointing horizontal (almost!)

Main beam and sidelobes see part sky and part ground

Spillover above horizontal sees the sky

Spillover below horizontal sees the ground

Dish pointing at 45 degrees 45 degrees is the standard elevation in EMECalc

Dish pointing at 45 degrees 45 degrees is the standard elevation in EMECalc

W1GHZ and SM6FHZ analysed a range of feeds with a dish and this was incorporated into EMECalc. (2015 SM meeting) For each feed, the Gain, G, and T (Tspill) are obtained from this analysis

	A1		▼ (*	<i>f</i> * N2	UO septu	m with W2	IMU dual-	mode horn	ı											~
1	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	T
8	HalfAngle	f/D	Edgelllum	XPOLtotal	Gain	Gain	Elevation=	: 10	10	20	20	30	30	40	40	45	<mark>4</mark> 5	50	50	-
9	degrees	£/D	dB	Eff %	ratio	dBi		T (K)	G/T (dB)	Т	G/T	Т	G/T	Т	G/T	Т	G/T	Г	G/T 1	Γ
10		Ŋυ																		-
11	WARNING	E Edge D	iffraction no	t accounted	for	Gain										T and	IG/I			
12	G/T	at $f/D < 0$).3 may be c	ptimistic		dDi										at 45	deg			
13						UDI											0			
14	90	0.2	5 -27.06	35.52	1402.38	31.47		6.86	23.1	6.84	23.12	6.73	23.19	6.55	23.31	6.45	23.37	6.35	23.44	=
15	89	0.25	4 -26.79	36.44	1438.61	31.58		6.91	23.18	6.89	23.2	6.78	23.27	6.6	23.39	6.5	23.45	6.4	23.52	
16	88	0.25	9 -26.51	37.37	1475.46	31.69		6.96	23.26	6.94	23.28	6.83	23.35	6.65	23.46	6.55	23.53	6.45	23.59	
17	87	0.26	3 -26.22	38.32	1512.94	31.8		7.02	23.34	7	23.35	6.88	23.42	6.7	23.54	6.6	23.6	6.51	23.67	
18	86	0.26	8 -25.92	39.78	1570.4	31.96		7.08	23.46	7.05	23.48	6.94	23.54	6.76	23.66	6.66	23.72	6.57	23.79	
19	85	0.27	3 -25.62	40.77	1609.69	32.07		7.14	23.53	7.12	23.54	7.01	23.61	6.83	23.73	6.73	23.79	6.63	23.85	
20	84	0.27	8 -25.31	41.78	1649.59	32.17		7.21	23.59	7.19	23.61	7.07	23.68	6.89	23.79	6.79	23.85	6.7	23.91	
21	83	0.28	3 -24.99	42.81	1690.11	32.28		7.28	23.66	7.26	23.67	7.15	23.74	6.97	23.85	6.87	23.91	6.77	23.97	
22	82	0.28	8 -24.66	43.85	1731.2	32.38		7.36	23.71	7.34	23.73	7.23	23.79	7.05	23.9	6.95	23.97	6.85	24.03	
23	81	0.29	3 -24.32	44.91	1772.84	32.49		7.45	23.77	7.42	23.78	7.31	23.85	7.13	23.95	7.03	24.02	6.93	24.08	
24	80	0.29	8 -23.97	45.97	1814.99	32.59		7.54	23.82	7.51	23.83	7.4	23.89	7.22	24	7.12	7.86	7.03	24.12	
25	79	0.30	3 -23.6	47.05	1857.61	32.69		7.64	23.86	7.61	23.87	7.5	23.94	7.32	24.04	7.22	7.96	7.13	24.16	
26	78	0.30	9 -23.22	48.14	1900.62	32.79		7.75	23.9	7.72	23.91	7.61	23.97	7.43	24.08	7.33	8.06	7.23	24.2	
27	77	0.31	4 -22.82	49.79	1965.61	32.93		7.86	23.98	7.84	23.99	7.73	24.05	7.55	24.16	7.45	8.2	7.35	24.27	
28	76	0.3	2 -22.41	50.91	2009.88	33.03		7.99	24	7.97	24.02	7.86	24.08	7.68	24.18	7.58	8.3	7.48	24.29	
29	75	0.32	6 -21.99	52.04	2054.36	33.13		8.14	24.02	8.11	24.04	8	24.1	7.82	24.2	7.72	8.39	7.62	24.31	
30	74	0.33	2 -21.57	53.17	2098.99	33.22		8.29	24.03	8.27	24.05	8.15	24.11	7.97	24.2	7.87	8.48	7.78	24.31	
31	73	0.33	8 -21.14	54.3	2143.68	33.31		8.46	24.04	8.44	24.05	8.32	24.11	8.14	24.2	8.04	8.57	7.95	24.31	
32	72	0.34	4 -20.7	55.43	2188.34	33.4		8.65	24.03	8.62	24.05	8.51	24.1	8.33	24.19	8.23	8.66	8.13	24.3	
33	71	0.3	5 -20.26	56.56	2232.9	33.49		8.85	24.02	8.83	24.03	8.71	24.09	8.54	24.18	8.44	8.74	8.34	24.28	
34	70	0.35	/ -19.82	57.68	2277.25	33.57		9.08	23.99	9.05	24.01	8.94	24.06	8.76	24.15	8.66	8.82	8.56	24.25	
35	69	0.36	4 -19.38	58.8	2321.3	33.66		9.32	23.96	9.3	23.97	9.19	24.03	9.01	24.11	8.91	8.9	8.81	24.21	•
I	()) N2	UO_dualı	node_GT 🥂												III					

Edge diffraction is not included.

EMECalc allows a wide range of feeds to be examined in dishes with a range of f/D Click on "Feed Type" to get this table

Fee	ed Type	s Prime Foo	cus Linear Offset
Feed Type	Direct Link	Link Reference	Feed Type
W2IMU dual-mode	Select	Fig 6 5-1 Page 2	70cm XE1XA Loop
VE4MA (Super 71L)	Select	Fig 7 Page 7	70cm Dipole reflector
VE4MA (Original -0.15L rim)	Select	Fig 3 Page 3	70cm Dipole reflector BFR
VE4MA (Small flush rim)	Select	Fig 17 Page 12	70cm ES5PC Patch
OK1DFC Septum (with choke ring)	Select	Fig 13 Page 10	70cm PY2BS Patch
OK1DFC Septum (no choke ring)	Select	Fig 5 Page 4	70cm PY2BS modified Patch
Chaparral 3 rings 0.20 W x 0.33 D, back 0.25 A	Select	Fig 39 Page 17	70cm DL4MEA Loop
RA3AQ Stepped Dual mode Septum (improved)	Select	Page 1 -7	70cm OK1DFC Loop
RA3AQ 2L dia .6L deep flush	Select	Fig 2 Page 2	70cm Dual Dipole square reflector
RA3AQ 2L dia .375L deep .175L back	Select	Fig 10 Page 8	70cm Dual Dipole circular reflector
Chaparral 3 rings 0.20λ W x 0.33λ D, back 0.05λ	Select	Fig 17 Page 25	70cm Dual Dipole in VK3UM dish
EIA Dual - Dipole (reference)	Select	Fig 6.2-6 Page 7	70cm CT1DMK Annular Ring
NBS Dual - Dipole (KF4JU)	Select	Fig 6.2-9 Page 11	
Dual Patch linear (W0LMD)	Select	Fig 2 Page 3	23cm G3LTF Dual feed
Dual Patch LHCP (W0LMD)	Select	Fig 4 Page 5	13cm G3LTF Dual feed
Dipole Splashplate (RSGB)	Select	Fig 6.2-2 Page 2	24 GHz W5LUA feed horn
Dipole rod reflector 0.24L	Select	Fig 6.2-1 Page 1	
Dipole over 1.25L sqr refl.	Select	Fig 6.2-3 Page 4	23cm SM6FHZ Patch feed with BFR
Quad Loop opt. (KF4JU)	Select	Fig 6.2-14 Page 17	23cm SM6FHZ Patch feed without BFF
N2UO Septum in W2IMU	Select	Fig 6	23cm SM6FHZ 5 step Septum 0.710L
Optimum dual-mode, flare 2L x 3.10L long	Select	Fig 8	23cm SM6FHZ 5 step Septum 0.795L
Optimum dual-mode, flare 3L x 4.85L long	Select	Fig 6	9cm SM6FHZ 5 step Septum 0.748L
Optimum dual-mode, flare 4L x 6.55L long	Select	Fig 9	6cm SM6FHZ 5 step Septum 0.749L
Optimum dual-mode, flare 5L x 8.25L long	Select	Fig 10	3cm SM6FHZ 5 step Septum 0.692L
Optimum dual-mode, flare 6L x 10.0L long	Select	FIQ 11	3cm SM6FHZ 5 step Septum 0.795L
70cm SM6FHZ BFR Loop	Select	Item 10	
70cm SM6FHZ BFR Loop with Choke	Select	Item 9	

Table Colour coding

Red ..fully known feed characteristics computed by Paul W1GHZ and Ingolf SM6FHZ. Grey .. off set feeds where spill over is assumed to be 20% of that if installed in a prime focus dish. Blue .. Optimised feed spill over value computed from best available data.

No colour .. values derived from polar plots.

Dish at 45 degrees elevation with edge diffraction Also missing from "Spillover" is feed support scattering and feed support shadowing

Spillover contribution varies with Elevation Examples at 0.4 f/D. 290K ground, 5.7K sky

Mesh Feed-through, Tft

• Mesh feed-through is calculated from the book by Otoshi,

"Noise temperature theory and applications for deep space communications antenna systems". P275 This is also in a spread sheet on the W1HDQ website

- The small gain loss is applied to the dish gain G.
- When the dish is at Zenith the feed horn sees the hot ground through the mesh and if the transparency is x% then Tft is (x/100)*Tg where Tg is set by the ground temperature slider.
- When the dish is at 45 degrees this changes so that the horn sees some cold sky through the mesh and less hot ground and this is taken into account in the estimate.

Mesh Feedthrough controls

Press for solid dish

Y factor measurement

- If we point the antenna at the cold sky and then at a known source, the sun, moon, or radio star or the ground, then the power ratio observed is known as the Y factor.
- If we know the flux (or the temperature) of the source then we can derive G/Tsys.
- In EMECalc we can insert the parameters we believe we have and see if the measurement gives the predicted result.

Y factor measurement

 Accurate measurement requires widest bandwidth, B and long integration time, T
 The smallest temperature change, Tmin, that you can detect is.

Tmin =Tsys/ (B*T)^0.5

- Several analogue meter designs available.
- For measurement I use Spectravue in Continuum mode.

Ground / Cold Sky ratio measurement is different from Y factor measurement of sun, moon and star measurement

> Ve will describe Ground / Cold Sky next

Ground / Cold Sky ratio measurement

- A useful measurement as a reference but not easy to make. The target must fill at least the projected area of the dish inside the near field, 2*D^2/λ where D is dish diameter.
- The formula used in EMECalc again takes account of the fact that a portion of both the feed-through and spillover sees cold sky.
- The target should ideally be a rough absorber otherwise the incident wave will reflect (reciprocity invoked). It should also not reflect the cold sky back to the dish. Trees in full leaf seem to work fairly well.
- A Slider is provided to adjust for target quality, Q.

Ground / Cold Sky ratio location Q slider

Target used for Ground/Cold Sky tests Clump of trees at 50m

Ground / Cold Sky measurements at 23 and 6cm with the tree target

7.25dB. Prediction 7.3dB Q 0.8 Tg 220K Tsky 10K

6cm tipping test

NF estimation using cold sky to ground. In this case a piece of X-band absorber is used at the "hot" ground

Y= [Trx +Thot] / [Trx +Tcold] Gives result Trx = 105-120K

(More attention to detail needed for a definitive and more accurate result)

How EMECalc calculates Y factor from Sun, Moon and Stars

EMECalc Key equation (2)

Y= [**G***Ψ* λ^{2} / **Tsys***K] -1

G Antenna gain

 Ψ Flux of the object being observed

 λ Wavelength

Tsys System temperature

K contains the constants. $8^*\pi^*k$

This formula is used for sun , moon and radio star measurements

Sun noise Y= [**G***Ψ* λ^2 / **Tsys***K] -1

Two Station EME (Rx Performance Source Pos. Planets Oky Map Nome Data	x 10 Multiplier Note Pad Hint - Res Ver. History VK3UM.com /Help About Exit
Two Station EME Rx Performance Source Pos. Planets Oky Map Name Data Tx A (Home Station) Gattr Theme Rx BW Diam Meth Stechtinity EdeXVIN 5760 MHz 283.87 dB 6.0 K 145 Hz 1.00 mm 6.00 mm -156.8 dBm 15.3 dB Frequency Path Loss TSHy Circ 6.413 IPS Learmonth Western Au 2019 Apr 15 1216z Loss 0.288 dB Meth Ged to Cold Sky 7.89 dB 10.0m 5.87 K 46.82 K	X 10 Multiplier Note Pad Hint - Res Ver. History VK.3UM.com /Help \About \Exit Parabolic Reflector Food large 25 m Pered Type fon SMM/M2 manum 0.743L Linear Pol. Dish Gain Dish Gain Dish Gain Metric 0.38 73.2% 0.607* 89817 47.38 dBd 49.53 dBi Home Station Y Factor Calc NotePol NotePol System TK
Tx A Output Power Transmission Loss Power at Feed Moon Y 40 Watts 16.02 dBW 0.1 dB 39 Watts 15.92 dBW 3,510,886 W EIRP	C Sayttarius A C Taurus A 304 Jy 6K 105.62 K
Growd Temperature TSys 105.62 K = 1.35 dB	Date Ovgnuss C Termination
Dx Station as received at Home Station 5.88 dB Home Station as received at Dx Station 11.09 dB	Quiet Source (Quid) ● TSky (variable) ● Noice Source Positions: > Y Figure Information
	→
	Efective Apenture Beam Within Ratio et Current Moon Data
	TxB 3.08 M ² 0.36 Crit Critical Illium 6.5 %
	TxA 1.28 1.08dB 1.30 1.13dB 850.39 29.30dB 4th Quarter TxB 1.05 0.19dB 1.05 0.20dB 178.15 22.51MB P Angle 28° ✓ Default
Operating Frequency Calcuto enter a User Prequency	Moon Radar Equ. Current Moon Distance Moon Angular Diam Noon Temp 52.78 dB 378,293 kms 0.526° 31'35.3" 229 K
50 MHz 432 MHz 2304 MHz 10.368 GHz 70 MHz 144 MHz 900 MHz 3456 MHz 24.048 GHz 406 MHz	Moon Feature Loss Moon Flue 10°-22 Moon Declination Free or adjusted atu
O 222 MHz O 1296 MHz O 5760 MHz O 47.088 GHz O 2295 MHz	Eigheering Paner SV - 1.55 Dec. 20.56 140 VK3UM Ver 11.10

Correction for an extended source

If the source has a comparable or greater angular extent than the antenna beamwidth then not all the flux will be collected by the antenna and a correction is made to reduce the flux value, in this case 1.3

Moon Noise uses the same equation with an appropriate correction

For derivation of moon temperature see my 2013 paper at this conference. Moon temperature is converted into flux When the source has an angular extent larger than the beamwidth then less of the total flux is collected. The flux value used in the Y factor equation has to be modified. The correction is affected by beam shape and source shape

Moon noise and sun noise limits as dish size increases

Radio Star flux data was provided by Franck, F5SE

Two Station EME Rx Performance Source Pos. Planets Sky Map Home Data	x 10 Multiplier Note Pad Hint - Res Ver. History VK3UM.com /Help/About /Exit
Tx A (Home Station) G3LTF_5760_3 Rx BW Diam Mech. Spacing H-V : Selectivity Ecto S/N	
5760 MHz 283.87 dB 6.0 K → 145 Hz → 1.00 mm → 6.00 mm → -156.8 dBm 15.31 dB	
IPS Learmonth Western Au 2019 Apr 15 1216z 600 mm ▼ 0.30	Derobelia Beflector
10.7cm 15.87K 45.82K (Ford DUDIL NetHOLDU Image: Feed Type Gen SM6FHZ Septum 0.143L Linear Pol. ✓ Circular Pol. Diameter Size f / D Efficiently Beam Width Gain Diameter
74 U.2U dB U.65 dB I 1.U dB U.3 dB I.5 dB I 5.24 K 9.30 K 18.61 dB Image: Second	→ 6.00 m → Metric 0.38 → 73 2% → 0.607* 89817 47.38 dBd 49.53 dBi
Get stu	Home Station Y Factor Calc Notedford Flux Quiet footd Sky System TK
Tx A Output Power Transmission Loss Power at Feed Moon Y Image: A Output Power 10.00 ADM 0.1 AD 20.00 ADM 20.00 A	Noise Source (Hot) 304 Jy 6 K 105.62 K
40 Watts 16.02 dB/W U.1 dB 33 Watts 15.32 dB/W 3,510,886 W EIRP Ground Temperature	Date Cassiopeia A O Virgo A Point Source Y Factor 0.09 dB
Restler Note Temperature 230 K 17 C System Note Temperature System Note Temperature	C Centaurus A
Change Moon Distance	C Aquarius or Leo TSky (variable)
Pergee 378 293 kms	Noise Source Positions. Y Figure Information
	<u>→</u>
	Ethodar Aperture Beam With Rado Set Current Moon Moon Data Por Sen on Data
	→ Ethicate Aperture Beam Wath Ratio Set Current Moon Data TxA 19.36 M ² 0.87 SJF Update Moon Phase 0.08 When S 5 %
	Ethedae Aperfune Beam With Ratio Set Current Moon Moon Data TxA 19.36 M ² 0.87 SXF Update Moon Phase 0.08 Moon Ream Fill Factor Sur Beam Fill Factor Gur Ratio Illum 6.5 % TxA 1.28 1.08dB 1.30 1.13dB 850.39 29.30dB 4th Quarter
	Beam With Fatio Beam With Fatio Set Current Moon Moon Data Default Phase 0.08 Default Default Default Default Moon Beam Fill Factor Sun Beam Fill Sun Beam Sun Sun Beam Sun Beam Sun Beam Sun Beam Sun Beam Sun Sun Beam Sun Sun Sun Sun Sun Sun Sun Sun Sun S
Operating Frequency Citato erer a Liter Prequency 50 MHz 0 432 MHz 0 2304 MHz 0 10 368 GHz 0 70 MHz	Ethethe Aperture Beam With Rate Set Current Moon Moon Data TxA 19.36 MP 0.67 S/F Update Moon Moon Beam Fill Factor Sun Beam Fill Factor Sint Beam Fill Factor Beam Fill Factor TxA 1.28 1.08dB 1.30 1.13dB 850.39 29.30dB 4th Quarter P Angle 28° Moon Reater Equ. Current Moon Distance Moon Angular Diam Moon Temp 52.78 378.293 kms 0.526° 31°35.3° 229 K
Operating Frequency Citiz to enter a User Frequency 50 MHz 432 MHz 2304 MHz 10.368 GHz 70 MHz 144 MHz 900 MHz 3456 MHz 24.048 GHz 406 MHz	Image: Serve Data Image: Serve Data <t< td=""></t<>

Virgo A (M87) measured at 23cm with 6m dish and SM6FHZ Kumar feed. Tsys 44.4K

Derivation of Solar Flux in EMECalc Updates from the NOAA database from world wide stations with multiple frequency measurements

Derivation of Solar Flux in EMECalc

Derivation of Solar Flux in EMECalc

	A CO. H		Sola	r Flux Site sel	lection				<u> </u>	
	NOAA, Space Weather Prediction Center Issued: 2019 May 22 1216z									
		W.Aust	S.Italy	USA [MA]	Canada BC	Canada BC	Hawaii	Canada BC	W.Aust	
		Learmonth	San Vito	Sag Hill	Penticton	Penticton	Palehua	Penticton	Learmonth	
	υтс	0400	1000	1700	1700	2000	2300	2300		
	245 MHz	12	12	11	-1	-1	11	-1		
	410 MHz	27	28	26	-1	-1	28	-1		
	610 MHz	35	-1	34	-1	-1	31	-1		
	1415 MHz	44	43	51	-1	-1	45	-1		
Click "Update NOAA" and	2695 MHz	68	-1	65	-1	-1	70	-1		
select the most relevant site.	4995 MHz	111	116	108	-1	-1	123	-1		
	8800 MHz	217	228	217	-1	-1	234	-1		
	15400 MHz	523	529	511	-1	-1	509	-1		
		Select	Select	Select	Select	Select	Select	Select	Select	
	Issued: 20	pdate NOAA 019 May 22 1] 216z	• 1 • 1	Get a NOAA NOAA History = current in	A prev. issue	La	Update 1 atest Update	PS	
				aj	pprox 8 upda	tes per day				

Derivation of Solar Flux in EMECalc

Delete Cu	rrent Record	ł	General In	fo	Exit	t
		Sag H	ill (MA)			
1296 MHz	10.7cm sfu	65	2019) May	22 0616z	
sfu flux Rx's	Amateur	frequ	ency adjusted	sfu	Addition	hal
245 MHz 11	50 MHz	2	2320 MHz	61	406 MHz	26
410 MHz 26	70 MHz	3	2424 MHz	62	1420 MHz	51
610 MHz 34	144 MHz	6	3400 MHz	78	2295 MHz	61
1415 MHz 51	222 MHz	10	3456 MHz	79	2800 MHz	67
2695 MHz 65	432 MHz	27	5760 MHz	130	8840 MHz	219
4995 MHz 108	900 MHz	40	10368 MHz	287	32000 MHz	884
8800 MHz 217	1296 MHz	48	24048 MHz	896		
15400 MHz 511	2304 MHz	61	47088 MHz	1923	Record # 10)5 of 1
Upda	te sfu	4	Previously	store	ed sfu Data	1>

Updated curve of Solar Flux vs Frequency is now displayed with extrapolated values for the amateur frequencies. Note the close alignment with the theoretical quiet sun curve

Finally, a comment on measurement and actual operation

Cross-polar performance is important and mostly negleced All our sun, moon, star measurements are using noise as the signal, but we communicate with coherent signals. Good CP <u>across the whole aperture</u> is important. Circular feeds are significantly better than square ones.

Acknowledgements

- To Doug, VK3UM (RIP) who created this wonderful toolset.
- To Paul W1GHZ and Ingolf SM6FHZ for their feed analysis.
- To the many others who gave Doug help, advice and suggestions.

Thank you for listening

Sky Noise Temperature 5.7GHz 45 deg. Elevation Tsky = 7K

At 10 deg. Elevation it is 14K