Some notes and Useful Links for H Line Observers.

F1EHN H Line video https://www.youtube.com/watch?v=HGwkZY4E64k

VLSR Calculators

http://mukhad.rian.kharkov.ua/vlsr_w75n_rt70.html or http://www.jupiterspacestation.org/software/Vlsr.html

Galactic to Celestial Coordinate converters:-

http://www.jupiterspacestation.org/software/Galactic.html or https://lambda.gsfc.nasa.gov/toolbox/tb_coordconv.cfm

The formulae from the spread sheet:-

N91		🔹 🕉 🗵	=													
-	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	
1	Normal Scan		2014-04-02	10:38:42	1420.405	Int, Secs	:	3 mV/dB	210	TSys K	50	Std IAU VLSR	M & B VLSR		Correction	T 15.
2	MHz	km/s	DET 1	Atten dB			Noise Floor	VLSR	Y Factor	Degrees K		-25.99	-23.08			0
3	1420.1	64.4	1.98	8	1	1.984	1.98	3 90.4	-0.02	2 0)					
4	1420.11	62.3	1.97	8	2		1.98	3 88.3	-0.06	5 -1						
5	1420.12	60.2	1.98	8	3		1.98	2 86.2	-0.01	I C)					
6	1420.13	58.1	1.99	8	4		1.98	1 84.1	0.04	L C)				GL	ong
7	1420.14	56.0	2	8	5		1.98	82.0	0.09) 1						
8	1420.15	53.9	2	8	6	i	1.98) 79.9	0.09) 1					Δnte	-nna Te
9	1420.16	51.8	2	8	7		1.97	77.7	0.10) 1					7410	anna ry
10	1420.17	49.6	1.99	8	8	i	1.97	75.6	0.05	5 1						
11	1420.18	47.5	2	8	9	b	1.97	3 73.5	0.10) 1						
12	1420.19	45.4	2	8	10		1.97	7 71.4	0.11	1						
13	1420.2	43.3	2	8	11		1.97	69.3	0.11	1 1						
14	1420.21	41.2	2.01	8	12	1	1.97	67.2	0.16	i 2	2					
15	1420.22	39.1	1.99	8	13		1.97	65.1	0.07	1 1						
16	1420.23	37.0	2	8	14		1.97	63.0	0.12	2 1						_
17	1420.24	34.9	2	8	15		1.974	4 60.8	0.12	2 1						
18	1420.25	32.7	2	8	16	i	1.974	58.7	0.13	3 1						_
19	1420.26	30.6	2.01	8	17		1.973	3 56.6	0.18	3 2	2					
20	1420.27	28.5	2.01	8	18		1.973	2 54.5	0.18	3 2	2					
21	1420.28	26.4	2.02	8	19		1.97	2 52.4	0.23	3 3	3					
22	1420.29	24.3	2.02	8	20	l	1.97	1 50.3	0.23	3 3	3	0				Δ
23	1420.3	22.2	2.01	8	21		1.97	48.2	0.19	2	2	ě				
24	1420.31	20.1	2	8	22		1.97	46.1	0.14	1 2	2	ě			^	
25	1420.32	18.0	2.01	8	23		1.96	9 43.9	0.20) 2	2					
26	1420.33	15.8	2.01	8	24		1.96	41.8	0.20) 2	2					
27	1420.34	13.7	2.03	8	25		1.96	3 39.7	0.30) 4	1	-				1
28	1420.35	11.6	2.04	8	26	i	1.96	7 37.6	0.35	5 4	1	_				1
29	1420.36	9.5	2.04	8	27		1.96	35.5	0.35	4	-	L				1
30	1420.37	7.4	2.01	8	28		1.96	5 33.4	0.21	2	2	↓			/	+-
31	1420.38	5.3	2.01	8	29		1.96	31.3	0.21	3	3	L .				
32	1420.39	3.2	2.07	8	30		1.96	29.2	0.50) 6	i		~~~	Mar -		
33	1420.4	1.1	2.09	8	31		1.964	4 27.0	0.60) 7	'	000	400			-

Topocentric velocity B3 = $(300/A3)^*(A3-\$E\$1)^*10^3....$ \$E\$1 is the Rest frequency for HI. VLSR H3 =B3-\$L\$2. ...\$L\$2 is calculated for the date time, direction of the observation Y Factor I3 = (C3-G3)/(\$I\$1/1000)+D3-\$D\$3... \$I\$1 is the detector slope. Antenna temperature = $(10^{(I3/10)})^*$ K\$1-\$K\$1+\$O\$2 ...\$K\$1 is T Sys \$O\$2 is zero.

Noise floor in column G is calculated as a straight line from the average of the first 5 lines of DET Volts to the average of the last 5 lines of DET voltage.

Other useful Links

Milky Way Fully annotated link:- <u>https://apod.nasa.gov/apod/ap080606.html</u>

F1EHN H Line movie:- <u>https://www.youtube.com/watch?v=HGwkZY4E64k</u>

Mapping the Galaxy + Dark matter:- <u>https://www.youtube.com/watch?v=-UrzmAa62ho</u>

University of Bonn all sky H Line survey.

<u>https://www.astro.uni-bonn.de/hisurvey/profile/index.php</u> This can be used to verify your calibration it even allows you to set the beam width to that of your antenna.